Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Biochem Biophys Res Commun ; 701: 149612, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316091

RESUMO

Intestinal ischaemia‒reperfusion (I/R) injury is a surgical emergency. This condition is associated with a high mortality rate. At present, there are limited number of efficient therapeutic measures for this injury, and the prognosis is poor. Therefore, the pathophysiological mechanisms of intestinal I/R injury must be elucidated to develop a rapid and specific diagnostic and treatment protocol. Numerous studies have indicated the involvement of endoplasmic reticulum (ER) stress in the development of intestinal I/R injury. Specifically, the levels of unfolded and misfolded proteins in the ER lumen are increased due to unfolded protein response. However, persistent ER stress promotes apoptosis of intestinal mucosal epithelial cells through three signalling pathways in the ER, impairing intestinal mucosal barrier function and leading to the dysfunction of intestinal tissues and distant organ compartments. This review summarises the mechanisms of ER stress in intestinal I/R injury, diagnostic indicators, and related treatment strategies with the objective of providing novel insights into future therapies for this condition.


Assuntos
Estresse do Retículo Endoplasmático , Traumatismo por Reperfusão , Humanos , Resposta a Proteínas não Dobradas , Intestinos , Apoptose
2.
J Inflamm Res ; 16: 4941-4951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936596

RESUMO

Ferroptosis is a novel way of regulating cell death, which occurs in a process that is closely linked to intracellular iron metabolism, lipid metabolism, amino acid metabolism, and multiple signaling pathways. The latest research shows that ferroptosis plays a key role in the pathogenesis of acute kidney injury (AKI). Ferroptosis may be an important target for treating AKI caused by various reasons, such as ischemia-reperfusion injury, rhabdomyolysis syndrome, sepsis, and nephrotoxic drugs. This paper provides a review on the regulatory mechanisms of ferroptosis and its role in AKI, which may help to provide new research ideas for the treatment of AKI and future research.

3.
Eur J Pharmacol ; 959: 176090, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37778612

RESUMO

BACKGROUND: Intestinal ischemia/reperfusion injury (IRI) is a multifactorial, complex pathophysiological process in clinical settings. In recent years, intestinal IRI has received increasing attention due to increased morbidity and mortality. To date, there are no effective treatments. Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, has been demonstrated to be effective against intestinal IRI. In this systematic review and meta-analysis, we evaluated the efficacy and potential mechanisms of DEX as a treatment for intestinal IRI in animal models. METHODS: Five databases (PubMed, Embase, Web of Science, Cochrane Library, and Scopus) were searched until March 15, 2023. Using the SYRCLE risk bias tool, we assessed methodological quality. Statistical analysis was conducted using STATA 12 and R 4.2.2. We analyzed the related outcomes (mucosa damage-related indicators; inflammation-relevant markers, oxidative stress markers) relied on the fixed or random-effects models. RESULTS: There were 15 articles including 18 studies included, and 309 animals were involved in the studies. Compared to the model groups, DEX improved intestinal IRI. DEX decreased Chiu's score and serum diamine oxidase (DAO) level. DEX reduced the level of inflammation-relevant markers (interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α). DEX also improved oxidative stress (decreased malondialdehyde (MDA), increased superoxide dismutase (SOD)). CONCLUSIONS: DEX's effectiveness in ameliorating intestinal IRI has been demonstrated in animal models. Antioxidation, anti-inflammation, anti-apoptotic, anti-pyroptosis, anti-ferroptosis, enhancing mitophagy, reshaping the gut microbiota, and gut barrier protection are possible mechanisms. However, in light of the heterogeneity and methodological quality of these studies, further well-designed preclinical studies are warranted before clinical implication.


Assuntos
Dexmedetomidina , Traumatismo por Reperfusão , Ratos , Animais , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Ratos Sprague-Dawley , Agonistas de Receptores Adrenérgicos alfa 2/uso terapêutico , Traumatismo por Reperfusão/patologia , Inflamação/tratamento farmacológico , Isquemia/tratamento farmacológico
4.
Bioengineered ; 14(1): 2253414, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37674357

RESUMO

Intestinal ischemia-reperfusion (I/R) injury is a condition in which tissue injury is aggravated after ischemia due to recovery of blood supply. Bone marrow mesenchymal stem cell-derived exosome (BMSC-exo) showed a protective effect on I/R injury. This study aimed to investigate the possible mechanisms by which BMSC-exos ameliorate intestinal I/R injury. We isolated mouse BMSC-exos by super-centrifugation and found that they effectively increased cell viability in a cell model, alleviated intestinal barrier injury in a mouse model, and downregulated the expression of inflammatory cytokines and pyroptosis-related proteins, suggesting that BMSC-exos may alleviate intestinal I/R injury in vitro and in vivo by regulating pyroptosis. We identified miR-143-3p as a differentially expressed miRNA by microarray sequencing. Bioinformatic analysis predicted a binding site between miR-143-3p and myeloid differentiation factor 88 (MyD88); a dual-luciferase reporter assay confirmed that miR-143-3p could directly regulate the expression of MyD88. Our findings suggest that miR-143-3p regulates pyroptosis by regulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) through the toll-like receptor (TLR)-4/MyD88/nuclear factor kappa-B (NF-кB) pathway. This study describes a potential strategy for the treatment of intestinal I/R injury using BMSC-exos that act by regulating pyroptosis through the miR-143-3p mediated TLR4/MyD88/NF-кB pathway.


BMSC-exos ameliorate intestinal ischemia/reperfusion (I/R) injurymiR-143-3p levels were reduced in I/R injury and increased with BMSC-exo treatmentmiR-143-3p directly targeted and downregulated the expression of MyD88BMSC-exos regulate pyroptosis in intestinal I/R injury via the miR-143-3p-MyD88 axis.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Traumatismo por Reperfusão , Animais , Camundongos , Fator 88 de Diferenciação Mieloide , NF-kappa B , Piroptose/genética , Traumatismo por Reperfusão/genética , MicroRNAs/genética
5.
Biosci Rep ; 43(8)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37530723

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Salidroside (SAL), a phenolic natural product present in Rhodiola rosea, are commonly used in the treatment of various ischemic-hypoxic diseases, including intestinal ischemia-reperfusion (IR) injury. However, their efficacy and potential mechanisms in the treatment of intestinal IR injury have not been investigated. OBJECTIVE: The objective of the present study is to investigate the pharmacological mechanism of action of SAL on intestinal IR injury using a network pharmacology approach combined with experimental validation. METHODS: In the present study, we used the Traditional Chinese Medicine Systematic Pharmacology (TCMSP) database and analysis platform and Comparative Toxicogenomics Database (CTD) to predict possible target genes of SAL, collected relevant target genes of intestinal IR injury from GeneCards and DisGenet websites, and collected summary data to screen common target genes. Then, the protein-protein interaction (PPI) target network was constructed and analyzed by STRING database and Cytoscape 3.8.2 with the above intersecting genes. Then, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed and the component-target-pathway network was constructed, followed by the use of molecular docking and molecular dynamic simulation to verify the possible binding conformation between SAL and candidate targets to further explore the potential targets of SAL in the treatment of intestinal IR injury. Finally, an in vivo model of mouse superior mesenteric artery ligation was established to assess the anti-intestinal IR injury effect of SAL by assessing histopathological changes in mouse small intestine by HE staining, detecting inflammatory factor expression by ELISA kit, and detecting the expression of key protein targets by Western blotting. RESULTS: A total of 166 SAL target genes and 1740 disease-related targets were retrieved, and 88 overlapping proteins were obtained as potential therapeutic targets. The pathway enrichment analysis revealed that the pharmacological effects of SAL on intestinal IR injury were anti-hypoxic, anti-inflammatory and metabolic pathway related, and the molecular docking and molecular dynamic simulation results showed that the core bioactive components had good binding affinity for TXNIP and AMPK, and the immunoblotting results indicated that the expression levels of TXNIP and AMPK in the small intestinal tissues of mice in the drug-treated group compared with the model group were significantly changed. CONCLUSION: SAL may target AMPK and TXNIP domains to act as a therapeutic agent for intestinal IR. These findings comprehensively reveal the potential therapeutic targets for SAL against intestinal IR and provide theoretical basis for the clinical application of SAL in the treatment of intestinal IR.


Assuntos
Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão , Animais , Camundongos , Farmacologia em Rede , Proteínas Quinases Ativadas por AMP , Simulação de Acoplamento Molecular , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
6.
Am J Chin Med ; 51(6): 1501-1526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37530507

RESUMO

Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that include Crohn's disease (CD) and ulcerative colitis (UC). Today, IBD has no successful treatment. As a result, it is of paramount importance to develop novel therapeutic agents for IBD prevention and treatment. Astragalus membranaceus (AMS) is a traditional Chinese medicine found in the AMS root. Modern pharmacological studies indicate that AMS and its constituents exhibit multiple bioactivities, such as anti-inflammatory, anti-oxidant, immune regulatory, anticancer, hypolipidemic, hypoglycemic, hepatoprotective, expectorant, and diuretic effects. AMS and its active constituents, which have been reported to be effective in IBD treatment, are believed to be viable candidate drugs for IBD treatment. These underlying mechanisms are associated with anti-inflammation, anti-oxidation, immunomodulation, intestinal epithelial repair, gut microbiota homeostasis, and improved energy metabolism. In this review, we summarize the efficacy and underlying mechanisms involved in IBD treatment with AMS and its active constituents in preclinical studies.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Astragalus propinquus , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite Ulcerativa/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Antioxidantes
7.
Curr Med Chem ; 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259936

RESUMO

OBJECTIVES: This study aims to summarize the current literature to demonstrate the importance of circular RNAs (circRNAs) in multiple aspects of prostate cancer (PCa) occurrence, progression, and treatment resistance and explore the potential role in therapeutic strategies aimed at targeting this molecule in PCa. METHODS: The relevant literature from PubMed and Medline databases is reviewed in this article. RESULTS: Non-coding RNA has been proven to play a vital role in regulating tumor progression. Among them, circular RNA plays a more unique role due to its nonlinear structure. Lots of circRNAs were found to be differentially expressed in PCa and regulate cell signaling pathways by regulating particular gene expressions. Recent studies have demonstrated that circRNAs are associated with the chemoresistance of urinary tumors, suggesting that circRNAs might be a novel therapeutic target and a marker for therapeutic response and prognosis assessment. CONCLUSION: The potential crosstalk of circRNAs modifications in PCa development, therapy, and regulation of tumor metabolism is portrayed in this review. However, more preclinical and clinical trials of this targeted strategy are necessary for the treatment of urinary tumors.

8.
Aging (Albany NY) ; 15(9): 3586-3597, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142295

RESUMO

BACKGROUND: Renal ischemia/reperfusion injury (IRI) induced pathological damage to renal microvessels and tubular epithelial cells through multiple factors. However, studies investigated whether miRNA155-5P targeted DDX3X to attenuate pyroptosis were scarce. RESULTS: The expression of pyroptosis-related proteins (caspase-1, interleukin-1ß (IL-1ß), NOD-like receptor family pyrin domain containing 3 (NLRP3), and IL-18) were up-regulated in the IRI group. Additionally, miR-155-5p was higher in the IRI group comparing with the sham group. The DDX3X was inhibited by the miR-155-5p mimic more than in the other groups. DEAD-box Helicase 3 X-Linked (DDX3X), NLRP3, caspase-1, IL-1ß, IL-18, LDH, and pyroptosis rates were higher in all H/R groups than in the control group. These indicators were higher in the miR-155-5p mimic group than in the H/R and the miR-155-5p mimic negative control (NC) group. CONCLUSIONS: Current findings suggested that miR-155-5p decreased the inflammation involved in pyroptosis by downregulating the DDX3X/NLRP3/caspase-1 pathway. METHODS: Using the models of IRI in mouse and the hypoxia-reoxygenation (H/R)-induced injury in human renal proximal tubular epithelial cells (HK-2 cells), we analyzed the changes in renal pathology and the expression of factors correlated with pyroptosis and DDX3X. Real-time reverse transcription polymerase chain reaction (RT-PCR) detected miRNAs and enzyme-linked immunosorbent assay (ELISA) was used to detect lactic dehydrogenase activity. The StarBase and luciferase assays examined the specific interplay of DDX3X and miRNA155-5P. In the IRI group, severe renal tissue damage, swelling, and inflammation were examined.


Assuntos
MicroRNAs , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Hipóxia , Inflamação , Isquemia , RNA Helicases DEAD-box/genética
9.
Medicine (Baltimore) ; 102(15): e33453, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37058073

RESUMO

MicroRNAs (miRNAs) regulate gene expression involving kidney morphogenesis and cell proliferation, apoptosis, differentiation, migration, invasion, immune evasion, and extracellular matrix remodeling. Programmed cell death (PCD) is mediated and regulated by specific genes and a wealth of miRNAs, which participate in various pathological processes. Dysregulation of miRNAs can disrupt renal development and induce the onset and progression of various renal diseases. An in-depth understanding of how miRNAs regulate renal development and diseases is indispensable to comprehending how they can be used in new diagnostic and therapeutic approaches. However, the mechanisms are still insufficiently investigated. Hence, we review the current roles of miRNA-related signaling pathways and recent advances in PCD research and aim to display the potential crosstalk between miRNAs and PCD. The prospects of miRNAs as novel biomarkers and therapeutic targets are also described, which might provide some novel ideas for further studies.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/genética , Biomarcadores , Diferenciação Celular
10.
Curr Med Chem ; 30(36): 4130-4148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36537607

RESUMO

Intestinal ischemia-reperfusion injury is a relatively common clinical condition that seriously threatens the prognosis of patients; however, the exact mechanism of intestinal ischemia-reperfusion injury has not been clarified. Recent studies have found that noncoding RNAs, including but not limited to lncRNA, circRNA, and miRNA, play an important role in the pathogenesis of intestinal ischemia-reperfusion. The findings cited in this paper reveal the expression, function, and mechanism of noncoding RNAs during intestinal ischemia-reperfusion. The mechanistic roles of noncoding RNAs in the occurrence and development of intestinal ischemia-reperfusion are discussed, including cell proliferation, autophagy, oxidative stress, apoptosis, oxidative stress, iron death, and many other aspects. However, many unknown mechanisms of association between noncoding RNAs and intestinal ischemia-reperfusion remain to be investigated.


Assuntos
MicroRNAs , RNA Longo não Codificante , Traumatismo por Reperfusão , Humanos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Isquemia
11.
Clin. transl. oncol. (Print) ; 24(12): 2272-2284, dec. 2022.
Artigo em Inglês | IBECS | ID: ibc-216075

RESUMO

Lung cancer is one of the most common malignant tumors with growing morbidity and mortality worldwide. Several treatments are used to manage lung cancer, including surgery, radiotherapy and chemotherapy, as well as molecular-targeted therapy. However, the current measures are still far from satisfactory. Therefore, the current research should focus on exploring the molecular mechanism and then finding an effective treatment. Interestingly, we and others have embarked on a line of investigations focused on the mechanism of lung cancer. Specifically, lncRNA small nucleolar RNA host gene has been shown to be associated with biological characteristics and therapeutic resistance of lung cancer. In addition, small nucleolar RNA host genes may be used as diagnostic biomarker in the future. Herein, we will provide a brief review demonstrating the importance of small nucleolar RNA host genes in lung cancer, especially non-small cell lung cancer. Although lncRNA has shown a crucial role in tumor-related research, a large number of studies are needed to validate its clinical application in the future (AU)


Assuntos
Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , RNA Citoplasmático Pequeno/genética , Biomarcadores Tumorais
12.
Clin Transl Oncol ; 24(12): 2272-2284, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36008615

RESUMO

Lung cancer is one of the most common malignant tumors with growing morbidity and mortality worldwide. Several treatments are used to manage lung cancer, including surgery, radiotherapy and chemotherapy, as well as molecular-targeted therapy. However, the current measures are still far from satisfactory. Therefore, the current research should focus on exploring the molecular mechanism and then finding an effective treatment. Interestingly, we and others have embarked on a line of investigations focused on the mechanism of lung cancer. Specifically, lncRNA small nucleolar RNA host gene has been shown to be associated with biological characteristics and therapeutic resistance of lung cancer. In addition, small nucleolar RNA host genes may be used as diagnostic biomarker in the future. Herein, we will provide a brief review demonstrating the importance of small nucleolar RNA host genes in lung cancer, especially non-small cell lung cancer. Although lncRNA has shown a crucial role in tumor-related research, a large number of studies are needed to validate its clinical application in the future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno
13.
Gut Pathog ; 14(1): 27, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35733158

RESUMO

Neutrophil extracellular traps (NETs) are extracellular reticular fibrillar structures composed of DNA, histones, granulins and cytoplasmic proteins that are delivered externally by neutrophils in response to stimulation with various types of microorganisms, cytokines and host molecules, etc. NET formation has been extensively demonstrated to trap, immobilize, inactivate and kill invading microorganisms and acts as a form of innate response against pathogenic invasion. However, NETs are a double-edged sword. In the event of imbalance between NET formation and clearance, excessive NETs not only directly inflict tissue lesions, but also recruit pro-inflammatory cells or proteins that promote the release of inflammatory factors and magnify the inflammatory response further, driving the progression of many human diseases. The deleterious effects of excessive release of NETs on gut diseases are particularly crucial as NETs are more likely to be disrupted by neutrophils infiltrating the intestinal epithelium during intestinal disorders, leading to intestinal injury, and in addition, NETs and their relevant molecules are capable of directly triggering the death of intestinal epithelial cells. Within this context, a large number of NETs have been reported in several intestinal diseases, including intestinal infections, inflammatory bowel disease, intestinal ischemia-reperfusion injury, sepsis, necrotizing enterocolitis, and colorectal cancer. Therefore, the formation of NET would have to be strictly monitored to prevent their mediated tissue damage. In this review, we summarize the latest knowledge on the formation mechanisms of NETs and their pathophysiological roles in a variety of intestinal diseases, with the aim of providing an essential directional guidance and theoretical basis for clinical interventions in the exploration of mechanisms underlying NETs and targeted therapies.

14.
Biochem Biophys Res Commun ; 618: 15-23, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35714566

RESUMO

Hypoxia-inducible factor 1-α (HIF-1α) mediates the occurrence and development of renal diseases and fibrosis. In the process, dysregulated cellular metabolism was suggested to be involved in several pathological processes. Here, we found that HIF-1α expression was increased in the early stage of renal fibrosis, and significant metabolic remodeling was triggered. Epigenetic events that drive diseases were characterized previously. Our study showed that ten-eleven translocation-2 (TET2) was upregulated in both renal fibrosis models and metabolite-treated samples. Furthermore, we found that the promoter of α-SMA was hypomethylated at CpG sites, which promoted the expression of α-SMA and the occurrence of renal fibrosis. HIF-1α inhibition alleviated renal fibrosis development by improving metabolic remodeling and TET2 activation. Our studies provide novel insight into HIF-1α-mediated metabolic remodeling in the pathogenesis of renal fibrosis and propose a concept that targets this pathway to treat fibrotic disorders.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Nefropatias , Túbulos Renais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia
15.
Dig Dis Sci ; 67(11): 5090-5106, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35624329

RESUMO

BACKGROUND: Intestinal ischemia-reperfusion (I/R) injury is a critical pathophysiological process involved in many acute and critical diseases, and it may seriously threaten the lives of patients. Exosomes derived from bone marrow mesenchymal stem cells (BMSC-exos) may be an effective therapeutic approach for I/R injury. AIMS: This study aimed to investigate the role and possible mechanism of BMSC-exos in intestinal I/R injury in vivo and in vitro based on the miR-144-3p and PTEN/Akt/Nrf2 pathways. METHODS: BMSC-exos were isolated from mouse BMSCs by super centrifugation methods. The effects of BMSC-exos on I/R intestinal injury, intestinal cell apoptosis, oxidative stress and the PTEN/Akt/Nrf2 pathway were explored in vivo and in vitro. Furthermore, the relationship between miR-144-3p and PTEN was confirmed by a dual-luciferase reporter assay. The miR-144-3p mimic and inhibitor were used to further clarify the role of miR-144-3p in the mitigation of intestinal I/R by BMSC-exos. RESULTS: BMSC-exos effectively alleviated intestinal pathological injury, reduced intestinal cell apoptosis, relieved oxidative stress and regulated the PTEN/Akt/Nrf2 pathway in vivo and in vitro. In addition, miR-144-3p was significantly reduced in the oxygen and glucose deprivation/reperfusion cell model, and miR-144-3p could directly target PTEN to regulate its expression. Additional studies showed that changing the expression of miR-144-3p in BMSC-exos significantly affected the regulation of intestinal injury, intestinal cell apoptosis, oxidative stress and the PTEN/Akt/Nrf2 pathway in I/R, suggesting that miR-144-3p in BMSC-exos plays an important role in regulating the PTEN/Akt/Nrf2 during intestinal I/R. CONCLUSIONS: BMSC-exos carrying miR-144-3p alleviated intestinal I/R injury by regulating oxidative stress.


Assuntos
Exossomos , MicroRNAs , Estresse Oxidativo , Traumatismo por Reperfusão , Animais , Camundongos , Exossomos/metabolismo , Glucose/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Células-Tronco Mesenquimais
16.
Stem Cell Res Ther ; 13(1): 216, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619154

RESUMO

BACKGROUND: Intestinal ischemia-reperfusion injury (IRI) causes localized and distant tissue lesions. Multiple organ failure is a common complication of severe intestinal IRI, leading to its high rates of morbidity and mortality. Thus far, this is poorly treated, and there is an urgent need for new more efficacious treatments. This study evaluated the beneficial effects of mesenchymal stem cells (MSCs) therapy on intestinal IRI using many animal experiments. METHODS: We conducted a comprehensive literature search from 4 databases: Pubmed, Embase, Cochrane library, and Web of science. Primary outcomes included the survival rate, Chiu's score, intestinal levels of IL-6, TNF-α and MDA, as well as serum levels of DAO, D-Lactate, and TNF-α. Statistical analysis was carried out using Review Manager 5.3. RESULTS: It included Eighteen eligible researches in the final analysis. We demonstrated that survival rates in animals following intestinal IRI were higher with MSCs treatment compared to vehicle treatment. Besides, MSCs treatment attenuated intestinal injury caused by IRI, characterized by lower Chiu's score (- 1.96, 95% CI - 2.72 to - 1.19, P < 0.00001), less intestinal inflammation (IL-6 (- 2.73, 95% CI - 4.19 to - 1.27, P = 0.0002), TNF-α (- 3.00, 95% CI - 4.74 to - 1.26, P = 0.0007)) and oxidative stress (MDA (- 2.18, 95% CI - 3.17 to - 1.19, P < 0.0001)), and decreased serum levels of DAO (- 1.39, 95% CI - 2.07 to - 0.72, P < 0.0001), D-Lactate (- 1.54, 95% CI - 2.18 to - 0.90, P < 0.00001) and TNF-α (- 2.42, 95% CI - 3.45 to - 1.40, P < 0.00001). The possible mechanism for MSCs to treat intestinal IRI might be through reducing inflammation, alleviating oxidative stress, as well as inhibiting the apoptosis and pyroptosis of the intestinal epithelial cells. CONCLUSIONS: Taken together, these studies revealed that MSCs as a promising new treatment for intestinal IRI, and the mechanism of which may be associated with inflammation, oxidative stress, apoptosis, and pyroptosis. However, further studies will be required to confirm these findings.


Assuntos
Células-Tronco Mesenquimais , Traumatismo por Reperfusão , Animais , Inflamação , Interleucina-6 , Lactatos , Células-Tronco Mesenquimais/patologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/terapia , Fator de Necrose Tumoral alfa
18.
Cell Mol Neurobiol ; 42(5): 1487-1500, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33620674

RESUMO

Brain ischemia reperfusion injury (BIRI) is defined as a series of brain injury accompanied by inflammation and oxidative stress. Astrocyte-derived extracellular vesicles (EVs) are importantly participated in BIRI with involvement of microRNAs (miRs). Our study aimed to discuss the functions of miR-29a from astrocyte-derived EVs in BIRI treatment. Thus, astrocyte-derived EVs were extracted. Oxygen and glucose deprivation (OGD) cell models and BIR rat models were established. Then, cell and rat activities and pyroptosis-related protein levels in these two kinds of models were detected. Functional assays were performed to verify inflammation and oxidative stress. miR-29a expression in OGD cells and BIR rats was measured, and target relation between miR-29a and tumor protein 53-induced nuclear protein 1 (TP53INP1) was certified. Rat neural function was tested. Astrocyte-derived EVs improved miR-29a expression in N9 microglia and rat brains. Astrocyte-derived EVs inhibited OGD-induced injury and inflammation in vitro, reduced brain infarction, and improved BIR rat neural functions in vivo. miR-29a in EVs protected OGD-treated cells and targeted TP53INP1, whose overexpression suppressed the protective function of EVs on OGD-treated cells. miR-29a alleviated OGD and BIRI via downregulating TP53INP1 and the NF-κB/NLRP3 pathway. Briefly, our study demonstrated that miR-29a in astrocyte-derived EVs inhibits BIRI by downregulating TP53INP1 and the NF-κB/NLRP3 axis.


Assuntos
Isquemia Encefálica , Vesículas Extracelulares , MicroRNAs , Traumatismo por Reperfusão , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Vesículas Extracelulares/metabolismo , Glucose/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Traumatismo por Reperfusão/patologia
19.
J Bioenerg Biomembr ; 53(6): 655-664, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34586578

RESUMO

Dexmedetomidine (Dex) can protect the intestine against ischemia/reperfusion (I/R)-induced injury. Sirtuin 1 (SIRT1) pathway, which could be activated by Dex, was reported to inhibit I/R injury. Pyroptosis plays an important role in intestinal diseases. We aimed to investigate whether Dex could attenuate pyroptosis of hypoxia/reoxygenation (H/R)-induced intestinal epithelial cells via activating SIRT1. The intestinal epithelial cell line IEC-6 with or without SIRT1 knockdown after H/R treatment was exposed to Dex, then cell viability, endoplasmic reticulum stress (ERS), apoptosis, pyroptosis, inflammatory cytokines production and SIRT1 expression were detected. Results showed that Dex treatment had no significant effect on IEC-6 cell viability but rescued the H/R-reduced cell viability. The expression of proteins involved in ERS including Grp78, Gadd153 and caspase 12 was enhanced upon H/R stimulation, but was reversely reduced by Dex. The cell apoptosis increased by H/R was also decreased by Dex. Additionally, Dex inhibited pyroptosis and inflammation, which were markedly promoted upon H/R stimulation. The expression of SIRT1, which was reduced after H/R treatment was also partially rescued by Dex. Finally, the above effects of Dex were all blocked by SIRT1 knockdown. In conclusion, Dex could inhibit H/R-induced intestinal epithelial cells ERS, apoptosis and pyroptosis via activating SIRT1 expression.


Assuntos
Dexmedetomidina , Traumatismo por Reperfusão , Apoptose , Dexmedetomidina/farmacologia , Estresse do Retículo Endoplasmático , Células Epiteliais/metabolismo , Humanos , Hipóxia , Intestinos , Piroptose , Transdução de Sinais , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia
20.
Front Mol Biosci ; 8: 695336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34250023

RESUMO

Objective: Atherosclerosis (AS) represents a common age-associated disease, which may be accelerated by oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell injury. This study aimed to investigate the effects of Propofol on ox-LDL-induced endothelial damage and the underlying molecular mechanisms. Methods: Human umbilical vein endothelial cells (HUVECs) were exposed to ox-LDL to induce endothelial damage. HUVECs were pretreated with 0, 5, 25 and 100°µM Propofol, followed by exposure to 100°µg/ml ox-LDL for 24°h. Cell viability was assessed by cell counting kit-8 (CCK-8) assay. The expression of autophagy- and apoptosis-related proteins was detected via western blot. Autophagosome was investigated under a transmission electron microscope. After co-treatment with autophagy inhibitor Bafilomycin A1 or si-Beclin-1, cell apoptosis was detected by flow cytometry. Furthermore, under cotreatment with PI3K activator 740Y-P, PI3K/Akt/m-TOR pathway- and autophagy-related proteins were examined by western blot. Results: With a concentration-dependent manner, Propofol promoted the viability of HUVECs exposed to ox-LDL, and increased LC3-II/I ratio and Beclin-1 expression, and decreased P62 expression. The formation of autophagosome was enhanced by Propofol. Furthermore, Propofol treatment elevated Bcl-2/Bax ratio and lowered Caspase-3 expression. Bafilomycin A1 or si-Beclin-1 distinctly ameliorated the inhibitory effects of Propofol on apoptosis in ox-LDL-exposed HUVECs. Moreover, Propofol lowered the activation of PI3K/Akt/m-TOR pathway in HUVECs under exposure to ox-LDL. However, its inhibitory effects were weakened by 740Y-P. Conclusion: Collectively, this study revealed that Propofol could ameliorate ox-LDL-induced endothelial damage through enhancing autophagy via PI3K/Akt/m-TOR pathway, which might offer a novel therapeutic strategy in AS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...